Expert judgments about transient climate response to alternative future trajectories of radiative forcing.
نویسندگان
چکیده
There is uncertainty about the response of the climate system to future trajectories of radiative forcing. To quantify this uncertainty we conducted face-to-face interviews with 14 leading climate scientists, using formal methods of expert elicitation. We structured the interviews around three scenarios of radiative forcing stabilizing at different levels. All experts ranked "cloud radiative feedbacks" as contributing most to their uncertainty about future global mean temperature change, irrespective of the specified level of radiative forcing. The experts disagreed about the relative contribution of other physical processes to their uncertainty about future temperature change. For a forcing trajectory that stabilized at 7 Wm(-2) in 2200, 13 of the 14 experts judged the probability that the climate system would undergo, or be irrevocably committed to, a "basic state change" as > or =0.5. The width and median values of the probability distributions elicited from the different experts for future global mean temperature change under the specified forcing trajectories vary considerably. Even for a moderate increase in forcing by the year 2050, the medians of the elicited distributions of temperature change relative to 2000 range from 0.8-1.8 degrees C, and some of the interquartile ranges do not overlap. Ten of the 14 experts estimated that the probability that equilibrium climate sensitivity exceeds 4.5 degrees C is > 0.17, our interpretation of the upper limit of the "likely" range given by the Intergovernmental Panel on Climate Change. Finally, most experts anticipated that over the next 20 years research will be able to achieve only modest reductions in their degree of uncertainty.
منابع مشابه
Importance of oceanic heat uptake in transient climate change
[1] The impact of the differences in the oceanic heat uptake and storage on the transient response to changes in radiative forcing is investigated using two newly developed coupled atmosphere-ocean models. In spite of its larger equilibrium climate sensitivity, one model (CM2.1) has smaller transient globally averaged surface air temperature (SAT) response than is found in the second model (CM2...
متن کاملClimate forcings and climate sensitivities diagnosed from atmospheric global circulation models
Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system r...
متن کاملClimate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates
[1] Mineral aerosol impacts on climate through radiative forcing by natural dust sources are examined in the current, last glacial maximum, pre-industrial and doubled-carbon dioxide climate. Modeled globally averaged dust loadings change by +88%, +31% and 60% in the last glacial maximum, pre-industrial and future climates, respectively, relative to the current climate. Model results show global...
متن کاملClimate change impacts are sensitive to the concentration stabilization path.
Analysis of policies to achieve the long-term objective of the United Nations Framework Convention on Climate Change, stabilizing concentrations of greenhouse gases at levels that avoid "dangerous" climate changes, must discriminate among the infinite number of emission and concentration trajectories that yield the same final concentration. Considerable attention has been devoted to path-depend...
متن کاملTime-Varying Climate Sensitivity from Regional Feedbacks
The sensitivity of global climate with respect to forcing is generally described in terms of the global climate feedback—the global radiative response per degree of global annualmean surface temperature change.While the global climate feedback is often assumed to be constant, its value—diagnosed from global climate models—shows substantial time variation under transient warming. Here a reformul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 28 شماره
صفحات -
تاریخ انتشار 2010